R.C.S. Measurements
We guarantee the specifications of the reflector. The reflector is delivered with 2 points of measurement (0° and 10° of bistatism in the axis). The delivered measurement corresponds to the measurement of the lens alone.
Moreover the reflector can be used from S band to Ku band.
Further measurement options (patterns, other frequencies…) on specific request.

Response
Bistatic

Polarization
Rectilinear. The reflected wave is on the same plane as the wave interrogating the reflector

Metallization
Metallization on ± 70° (azimuth and elevation)
The label of metallization locates the plane where R.C.S. measurements have been done.

Radom
Waterproof composite protection (also against salted ambiance). Acceleration – vibration tests have been passed allowing mounting in supersonic targets

Standard fixing (in option)
The fixing is located at the rear of the metallization.
Development of any other fixing at request

Specific unit packaging

⚠️ Precautions of use
The response of the lens depends on the environment.
- Avoid thick fairing
- Avoid fairing made of dielectrical material with important losses
- Avoid any object (especially metallic) positioned between the lens and the radar (strap, screw…)
- Take care in mounting

For any support: support@luneberg.com or +33 (0) 4 67 55 69 56

Valid from 31/08/2012
TECHNICAL DATA SHEET

LUNEBERG REFLECTORS
BISTATIC
RECTILINEAR POLARIZATION

Lun'tech
75 rue Jérémie Bentham / 34470 Pérols / France
Tel: (33) 4 67 55 69 56 / Fax: (33) 4 67 55 69 57
Email: luneberg@luneberg.com / web site: www.luneberg.com

Valid from 31/08/2012

<table>
<thead>
<tr>
<th>Reference</th>
<th>Frequency range</th>
<th>Measuring frequency (GHz)</th>
<th>Minimum Radar Cross Section guaranteed (sqm)</th>
<th>Diameter of the reflector without fixing</th>
<th>Weight without fixing (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XBR03</td>
<td>X</td>
<td>9,375</td>
<td>0,1 0,05</td>
<td>3,0 8</td>
<td>0,12</td>
</tr>
<tr>
<td>XBR04</td>
<td>X</td>
<td>9,375</td>
<td>0,4 0,2</td>
<td>4,0 10</td>
<td>0,27</td>
</tr>
<tr>
<td>XBR05</td>
<td>X</td>
<td>9,375</td>
<td>1,0 0,4</td>
<td>4,9 12</td>
<td>0,45</td>
</tr>
<tr>
<td>XBR07</td>
<td>X</td>
<td>9,375</td>
<td>2,2 0,7</td>
<td>7,0 18</td>
<td>1,3</td>
</tr>
<tr>
<td>XBR08.5</td>
<td>X</td>
<td>9,375</td>
<td>6 1</td>
<td>8,5 22</td>
<td>2,5</td>
</tr>
<tr>
<td>XBR09</td>
<td>X</td>
<td>9,375</td>
<td>6 1</td>
<td>9,2 23</td>
<td>2,9</td>
</tr>
<tr>
<td>XBR10</td>
<td>X</td>
<td>9,375</td>
<td>9 2</td>
<td>10,0 25</td>
<td>3,8</td>
</tr>
</tbody>
</table>

![Graph](image_url)

R.C.S. (m²)
Azimuth angle in degrees

0° of bistatism
10° of bistatism